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To design diverse combinatorial libraries or to select diverse compounds to augment a screening
collection, computational chemists frequently reject compounds that are g0.85 similar to one
already chosen for the combinatorial library or in the screening set. Using Daylight fingerprints,
this report shows that for IC50 values determined as a follow-up to 115 high-throughput
screening assays, there is only a 30% chance that a compound that is G 0.85 (Tanimoto) similar
to an active is itself active. Although this enrichment is greater than that found with random
screening and docking to three-dimensional structures, this low fraction of actives within similar
compounds occurs not only because of deficiencies in the Daylight fingerprints and Tanimoto
similarity calculations but also because similar compounds do not necessarily interact with
the target macromolecule in similar ways. The current study emphasizes the statistical or
probabilistic nature of library design and that perfect results cannot be expected.

Introduction
It is a central premise of medicinal chemistry that

structurally similar molecules have similar biological
activities. This premise is validated by the long experi-
ence that suggests rules-of-thumb such as that â-lac-
tams frequently possess antibacterial activity, that
phenethylamines are likely to have activity in the
central nervous system, and that aromatic nitro com-
pounds are likely to be mutagenic. Computational
chemists have exploited this premise in their analysis
of molecular diversity of compound libraries and in the
selection of compounds for high-throughput screening
(HTS).1-5 These uses raise two questions: (i) Do the
computational calculations of molecular similarity6

adequately reflect the factors that lead to biological
similarity, and (ii) do the generalizations apply across
many types of molecules or to only a subset of them?

Earlier, we examined the screening sets available at
the time, containing 2000-3000 members, to address
this question. We concluded that if a compound has a
Tanimoto similarity,6 based on Unity fingerprints,7 of
g0.85 to an active compound, then the compound has
an 80% chance of itself being active in the same assay.8,9

As a result, we do not purchase from an outside vendor
any compound that is g0.85 similar to a compound in
the Abbott screening collection. (This criterion typically
eliminates approximately 75% of the compounds offered
for purchase.) Others have reached a similar conclu-
sion.10-12 For example, Matter evaluated several differ-
ent molecular descriptors to quantify molecular diver-
sity relevant to biological activity.11 Using Unity fin-
gerprints, he concluded that “if two molecules have a
Tanimoto coefficient larger than 0.85...the biological
activity of the first molecule is similar to that of the
second one...This concept now allows to reduce the
redundancy of a database by rejecting structurally
similar molecules based on this similarity radius.”

In contrast, in an early study of the influence of the
method of compound selection on the hit rate and
diversity of hits obtained, Taylor used a range of 0.012-
0.50 as the frequency with which a compound similar
to an active is itself active.13 That is, his empirical
estimate was much lower than the one that was later
accepted by computational chemists. A later study from
the same company showed 0.40-0.6 as the proportion
of 0.85 similars that are active.14

Kubinyi presents compelling examples of the lack of
parallel between structural and biological similarity.15

This evidence is supported by the behaviors of medicinal
chemists. For example, we noticed that medicinal chem-
ists more frequently follow up, by synthesizing more
analogues, those hits for which several analogues had
also been tested. This tendency appears to be indepen-
dent of the source of the analogues: although many of
the sets of analogues had been synthesized in-house,
some sets of analogues had been purchased because the
collection did not go through the usual computational
screening or before we had demonstrated the superiority
of Ward’s clustering over Jarvis-Patrick clustering.16

When questioned about this behavior, the medicinal
chemists responded that the activity/inactivity of ana-
logues suggests if a hit might have “flat structure-
activity relationship (SAR)”sthat is, that all analogues
have the same potency and hence no improvement in
potency might be expected if other analogues were
synthesized. Hence, the medicinal chemists expected to
see, and apparently did see, that similar compounds do
not have similar activity, a contradiction to the hypoth-
esis underlying diversity selection of compounds for
screening.

Four factors led us to undertake the current study.
First, we were turning away many compounds that
otherwise were attractive to purchase. Second, we knew
even from the original analysis that by not purchasing
compounds similar to those in the screening set that
we would miss active compounds: the question was how
many. Third, the behavior of medicinal chemists sug-
gested that analogues have value that we previously

* To whom correspondence should be addressed. Tel: 1-847-937-
5362. Fax: 1-847-937-2625. E-mail: yvonne.c.martin@abbott.com.

† Computer-Assisted Molecular Design Department R47E.
‡ Department of Biomolecular Screening, R4PN.

4350 J. Med. Chem. 2002, 45, 4350-4358

10.1021/jm020155c CCC: $22.00 © 2002 American Chemical Society
Published on Web 08/13/2002



ignored. Last, we now had a large data set that could
help us more adequately quantitate the similarity
principle, particularly as it applies to selecting com-
pounds for screening. The current investigation provides
information that will allow us to improve our criteria
for selecting compounds for purchase and for targeted
libraries.

Materials and Methods
IC50 Data Set. We had collected a database of IC50 or null

values for compounds tested as a follow-up to HTS. A com-
pound is tested for IC50, as a single compound, if either the
HTS screen suggests that it may be active or it is similar to a
hit in screening or a previous IC50 determination. If a
compound is not active in the IC50 determination, only its
Abbott ID is entered into the database. In this data set of
19 533 compounds tested in one or more of 115 assays, 6784,
or 35%, are active in one or more assay; 5584 are active in
only one assay, 690 are active in two, 424 are active between
three and ten, and 86 are active in 10-19 assays. Hence, 82%
of the compounds are active in only one assay.

We built a Daylight17 database of the structures, results
from each of the IC50 assays, a summary field for the number
of IC50 values reported for a compound, and another summary
field for which assays an IC50 was reported. Although the
compounds tested were often salts, we built our database and
based our analysis on the part of the structure that is not a
common salt: these structures are available in our registration
system. The reasons for not using the salt are that most often
the common salt portion of the compound does not impart the
biological activity but also that different salts of the same
molecule do not have identical fingerprints and hence do not
have a similarity of 1.0. All of the analyses were performed
on normal smiles with the result that differences in stereo-
chemistry were ignored.

Table 1 summarizes the character of the database: the
number of actives in a particular assay ranges from three to
880, and the number of compounds similar to any active in
an assay ranges from four to 1563.

Monoamine Oxidase (MAO) Data Set. This data set of
1645 compounds, which had been screened for inhibition of
monoamine oxidase, was used in our previous evaluation of
clustering algorithms and structural descriptors.16,18,19 It will
allow the new results to be placed in context of our previous
work and allow others to compare their algorithms.18 It
contains 287 actives divided into three potency ranges. The
compounds were hand-selected by a medicinal chemist and
augmented with synthesized analogues that explore the SAR.
This database has the advantages that every compound was
tested in the assay and that three, approximately 10× differ-
ent, levels of potency are reported. Because it contains some
compounds synthesized for the project, the fraction of actives
in this database, 17.4%, is larger than is typically found in
screening databases.

Similarity Analyses. We performed automated similarity
searches using the Daylight toolkit program merq.20 Merq
processes each smiles string in a file, all structures with a
reported IC50 in a particular assay, for example. For each
compound in the file, merq reports how many and which
structures are similar to it using the Tanimoto measure of
similarity. The analysis then involves using Excel to remove
duplicate entries resulting from structures that are similar to
more than one active, to remove active compounds for which

no similars were found, and last to calculate the fraction of
actives in the remainder. Note that our measure includes only
those actives for which at least one similar compound was
found. This eliminates the problem, discussed by Delaney,14

of counting actives that are singletons and hence inflating the
fraction of actives at high similarities.

Cluster Identification. We also clustered the compounds
using an unsupervised nonhierarchical clustering algorithm
described by Taylor13 and later by Butina.21 It is summarized
in Figure 1. For the IC50 data set, there are 11615 true
singletons at g0.85 similarity. The clustering algorithm
identified 14 113 clusters of similar compounds at g0.85
similarity, or an average of 1.38 compounds per cluster. Of
these clusters, 11 897 are singletons; hence, only 2.4% of the
singletons are artifacts generated by the clustering algorithm.
The largest cluster contained 80 variously substituted 4-phen-
yl-6-amino-7-fluoro quinolones that had been synthesized for
antibacterial activity.22-25 Only four of these were active, all
in the same assay: in this assay, another 177 compounds from
different clusters were also active. The program found 1164
clusters in the monoamine oxidase data set, or an average of
1.42 compounds per cluster. In this data set, there are 943
true singletons: the clustering algorithm finds an additional
nine, or 1%, false negatives. The largest cluster contains 38
compounds, one of which is moderately active and seven of
which are slightly active. This cluster is structurally unrelated
to known MAO inhibitors.

Results

Table 1 and Figure 2 provide an overview of the
analysis of the HTS results. For only 3015 of the active
compounds, less than half had a g0.85 similar com-
pound that had been tested for IC50. This set forms the
basis for the further analysis of the HTS results. From
Table 1, it can be seen that the mean fraction of g0.85

Table 1. Statistics of the HTS Results in Different Assays

mean SD median min max

no. of actives 93.4 145 48 3 880
total no. of g0.85 similars to all actives in the assay 208 279 109 4 1563
max no. of g0.85 similars to any active in the assay 23.3 16.7 19 2 76
actives with similar compds 44.3 71.8 18 1 467
fraction of g0.85 similars that are active 0.288 0.128 0.278 0.046 1.00
fraction of actives with no g0.85 similars 0.532 0.139 0.534 0.139 0.857

Figure 1. Flow diagram of the procedure to cluster com-
pounds by similarity.
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similars that are active is 0.29 and the median is 0.28.
Figure 2 shows that for a large fraction of the assays,
the fraction of compounds similar to an active that are
themselves active in the same assay is between 0.20 and
0.40. Figure 2 also shows that the main conclusions are
not unduly influenced by data sets in which there are
only a few active compounds for which similars had been
tested. In fact, such data sets are responsible for the
proportions less than 0.2 and greater than 0.45. The
fraction of similars that are active in data sets that
contain more than 75 actives falls in the range of 0.20-
0.35, and in data sets that contain more than four
actives, the fraction is always less than 0.52.

Because the enrichment in actives was less than
expected, we explored the data further. Two factors
might skew the results: first, it is possible that for some
assays not all similars in the database had actually been
tested in the assay of interest and could be falsely
counted as inactive. This would be especially likely to
occur if the search for similar compounds was based on
a compound that was active in more than one assay.
Second, our initial analysis searched for similars of all
actives regardless of the potency of the active compound.

It is possible that an analogue of a weak compound
would be even weaker, with potency undetectable in our
assay. To investigate these factors, we identified nine
assays for which we were certain that all compounds
similar to an active had been tested. We then repeated
the above analysis using as search targets only com-
pounds with an IC50 < 10 µM, 10× lower than the
highest concentration tested in the IC50 determination,
but continued to count as active any compound with a
reported IC50. In addition, we confined the similarity
search to use only those compounds that were active in
only the target assay.

The results, summarized in Table 2, reveal a slightly
higher fraction of actives in similars to a potent selective
active. In three of the nine cases, the increase is
substantial. However, the median fraction of actives
increases only from 0.35 to 0.37. The results also
support the use of these sets of actives to derive answers
that apply to the larger data set, although for this set
the fraction of similars that are active is somewhat
higher than in the whole data set. Note also that the
fraction actives for assay 9 jumps from 0.52 to 0.74; it
might be that this is an artifact of the small number of
compounds. Table 3 summarizes the diversity of the
compounds used in this analysis.

The above analyses were performed using Daylight
fingerprints 1024 bits long. The default Daylight fin-
gerprints encode all of the substructures in a molecule
that contain from zero to seven bonds.17 To accom-
modate such a large number of possible substructures,
a hashing algorithm is used such that each type of
substructure sets a certain number of bits but no or few
substructures set exactly the same bits. Because short
fingerprints lose information by the hashing process,6
we reexamined the latter data sets using fingerprints
of lengths 2048 and 4096. The longer fingerprints have
a reduced chance that two different substructures will
set the same bits and hence artificially inflate the
similarity between two compounds. Figure 3 shows that
in general there is an increase in the fraction of similars
to an active that are themselves active, but the increase
is small. The lower panel shows that the longer finger-
prints are more selective because fewer (inactive) com-

Table 2. Summary of Detailed Analysis of Selected HTS Screens at g0.85 Similarity

assay 1 2 3 4 5 6 7 8 9

Calculations That Are Based on Similarity Searching of All Actives
total no. of actives with similars 105 46 15 266 390 25 309 467 37
total no. of actives plus similars 513 139 43 770 1114 92 938 1075 71
ratio actives/total 0.20 0.33 0.35 0.34 0.35 0.27 0.33 0.43 0.52

Calculations That Are Based on Similarity Searching of Only Potent and Selective Actives
no. of actives at 10 µM that

hit in only one assay
and have similar structures

32 12 14 97 120 7 74 377 9

total no. of selected actives plus similars 260 40 42 359 496 17 258 962 19
total no. of active compds 48 13 14 133 185 7 118 476 14
fraction of similars that are active 0.18 0.33 0.34 0.37 0.37 0.44 0.46 0.49 0.74

Table 3. Diversity of the Data Sets Used for the Detailed Analysis

assay 1 2 3 4 5 6 7 8 9

no. of g 0.85 clusters 27 15 13 92 106 11 69 260 7
compds per cluster 9.63 2.67 3.23 3.90 4.68 1.55 3.74 3.70 2.71
mean no. of g0.85 similar

compds for each potent
active with similars

18.4 4.17 3.07 5.42 5.49 2.42 7.12 7.48 2.89

Figure 2. For 115 assays, the fraction of molecules that are
similar to any active in the particular assay that are them-
selves active as a function of the number of actives with
similars. Similarity was evaluated as a Tanimoto coefficient
g0.85 using Daylight fingerprints of length 1024.
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pounds are retrieved in the searches based on longer
fingerprints.

In light of the above results, it is important to
demonstrate that molecular similarity is indeed related
to biological similarity. Figure 4 shows the effect of
increasing the similarity threshold on the fractions of
similars to an active that is active. Four assays were
excluded because not enough actives or similars were
in the database to give reliable results at higher
similarities. The figure shows a clear trend toward a
parallel between chemical and biological similarity.

To further expand this analysis, we examined the
MAO data set. Figure 5 shows the fraction actives
within those compounds similar to inactive, weakly
active, moderately active, and potent compounds. Be-
cause we knew that all compounds had been tested in
this assay, we expanded the similarity search range
down to g0.5 similarity. Note that the fraction active
within the set of compounds similar to an inactive is
lower than the fraction of actives within the whole data

set and that this fraction decreases as the similarity to
an inactive is increased. Also note that the fraction
active increases with the potency of the compounds used
for the similarity search and with the similarity cutoff
used in the search. Together, these observations validate
the principle that two similar compounds are more
likely to share the same biological properties than are
two compounds selected at random.

It is possible that the MAO data set is biased because
it contains compounds synthesized to follow up a lead;
therefore, we also investigated how many unique clus-
ters of compounds were found in the various similarity
searches. For this, we catalogued the clusters, calculated
based on g0.85 similarity, to which the similars belong
and also the clusters to which the active subset of
similars belong. Figure 6 shows that the fraction of
clusters identified that contains an active molecule
increases as the similarity threshold is tightened.
Hence, we conclude that the results from the MAO data
set are not misleading.

Discussion

How Frequently Are Molecules Similar in Struc-
ture to an Active Themselves Active? As expected,

Figure 3. For nine selected assays, a comparison of the
fraction of g0.85 similars to a potent selective active that are
themselves active using Daylight fingerprints of lengths 1024
(white bars), 2048 (gray bars), and 4096 (black bars).

Figure 4. For five selected assays, a comparison of the
fraction of similars to a potent active that are themselves
active as a function of the similarity threshold used for the
searching.

Figure 5. For the monoamine oxidase screening set, a
comparison of the fraction of similars to an active that are
themselves active as a function of the potency of the com-
pounds used for the similarity search and of the similarity
threshold used for the search.

Figure 6. For the monoamine oxidase screening set, the
fraction of clusters identified at g0.85 similarity that are active
vs the similarity threshold used to identify the similar
compounds.

Chemical and Biological Similarities Journal of Medicinal Chemistry, 2002, Vol. 45, No. 19 4353



for compounds that are similar to an active, the propor-
tion of actives is increased as compared to “random”
screening. The proportion of g0.85 similars to an active
that are themselves active is approximately 0.30. This
represents an enrichment of at least 30-fold as compared
to random screening for which hit rates of less than 0.01
are observed. The enrichment is approximately 10-fold
higher than we found with virtual screening using Dock
and PMF scoring, which itself was 2-fold higher than
Dock and Amber scoring.26 Hence, two-dimensional (2D)
similarity searching is a valuable way to find active
compounds. Of course it will not, by definition, find new
types of active compounds.

However, although pairs of g0.85 similar compounds
are more likely to have similar biological activity than
are two dissimilar compounds, this frequency is low
enough that screening truly diverse data sets will likely
miss finding clusters of active compounds. If only one
compound of a similarity set is screened, there is a 70%
chance that the activity within this cluster will not be
discovered; if five similars are screened, the probability
of missing the active compound drops to 17% (0.70)5 and
if ten, it drops to 3%. Of course, increasing the number
of similars in a database also decreases the diversity of
the database. Further studies will be needed to optimize
the number of similars that should be included.

Both Table 2 and Figure 5 suggest that the fraction
of actives within similar compounds increases with the
potency of the active used for the search. If this
observation holds true, it further supports the notion
that it is a poor strategy to exclude similar compounds
from a screening library.

These results with Daylight or Unity fingerprints are
not unprecedented. In an early study, as noted above,
Delaney found a range of fraction actives of 0.4-0.6.14

Recall, however, that he included in the ratio actives
for which no similar was identified and that hence his
values were inflated as compared to those reported here.

A number of alternative descriptors tested by the
Merck group again show less than ideal relationships
between similarity in chemical descriptors and biological
activity. They compared the ability of similarity search-
ing using a number of descriptors to find actives in the
highest ranked 300 compounds of a large data set. In
the test of performance of physicochemical property
topological descriptors in only one of the 10 test cases,
comparing the ability of nine possible descriptors was
the most favorable fraction active >0.5.27 In three cases,
it was less than 0.1. Slightly worse results were found
using geometric atom pair descriptors with eight of the
data sets.28 Similar results were found with similarities
calculated from the same two types of fingerprint by the
LaSSI method, latent semantic structural indexing.29

In a report concentrating on a novel clustering
method, Reynolds30 reported 0.43-0.70 fraction actives
in searches run at various similarity levels using either
topological torsions or atom pair fingerprints. In their
comparison of similarity searching to binary kernel
discrimination, Harper et al. found some but not ex-
traordinary enrichment of the fraction of actives in the
set of similar compounds.31 For example, using the MAO
data set, if 100 similars to half of the actives are
selected, 50 of these compounds are active. In a corre-

sponding test for a HTS data set, the number of actives
is only 10.

Dixon and Merz showed that in a SAR series the
correlation between the Daylight similarity of a mol-
ecule to the tightest CBG binder, 11-deoxycortisol, and
its binding affinity is 0.66.32 While significant, this
result indicates that only 43% of the variance in affinity
is explained by the similarity or lack of it to the
reference compound. From their plots, it appears that
fully one-third of the pairs of compounds that are g0.85
similar (Daylight fingerprints) differ by more than one
log unit in potency. Additionally, within series of
compounds whose potency is predicted by an optimum
number of near neighbors, the average correlation
coefficient for such predictions is 0.48.

Dixon and Merz also investigated the biological
information contained in a novel one-dimensional (1D)
representation of a molecule.32 In the case of 1D
descriptors generated from three-dimensional (3D) struc-
tures, denoted 3Df1D, the five compounds that are
g0.85 similar to 11-deoxycortisol vary in potency by
approximately an order of magnitude and the 10 that
are g0.80 similar vary in affinity by 2 orders of
magnitude.32 For 1D fingerprints generated from 2D
structures, 2Df1D, the corresponding numbers are
approximately 2 and 3 orders of magnitude. In the two
examples shown, plots show that compounds that are
g0.85 similar in 3Df1D fingerprints vary in potency
by 3 orders of magnitude. Again, similar compounds by
this measure do not have similar biological activity.

Although the results with alternative types of finger-
prints discussed above emphasize their lack of ability
to capture all of the features relevant for biological
activity, because they are different from traditional
substructure descriptors, they identify different mol-
ecules as similar to an active. Hence, they provide a
complementary method of searching for potentially
active compounds.

Do Biologically Similar Compounds Have Simi-
lar Structures? Considering such classic example pairs
as the nicotinic agonists acetylcholine (I, Chart 1) and
nicotine (II) or the dopaminergic agonists dopamine (III)
and pergolide (IV), the expected answer is no. In fact,
the highest Daylight Tanimoto similarity within this
group of four compounds (0.32) is between nicotine and
pergolide and the second highest (0.22) is between
nicotine and dopamine. Nevertheless, other types of
fingerprints might encode the features necessary for
biological activity and hence be suitable alternatives for
designing a screening collection. However, several groups
have shown that Daylight or Unity fingerprints are
more similar for compounds with the same biological
property than to compounds with different biological
activity. In the context of the present report, the
interesting finding is that one must go to similarity
levels much lower than 0.85 to find this relationship.

In a comparison of structurally different but bioiso-
steric compounds, Schuffenhauer, Gillett, and Willett
showed that 2995 bioisosteric pairs of molecules had a
mean Unity similarity of 0.54 as compared with 0.22
for random pairs.33 Makara compared ToPD, total
pharmacophore diversity, fingerprints with Unity fin-
gerprints on 10 small series of molecules chosen from
the Protein Data Bank.34 Only 4% of the structural pairs
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chosen from the PDB are g0.85 similar in Unity
fingerprints; the median similarity is 0.5. Despite this,
at a similarity level that includes only 5% of the
negatives (similarity of approximately 0.4), Unity fin-
gerprints recognize 94% of the similar pairs. For the
ToPD descriptors, Makara found that a similarity of 0.7
is required to identify all pairs of biologically similar
moleculessat g0.85 similarity, only 50% of the pairs of
close analogues are identified.34 At g0.70 similarity,
there is a complete separation of the pairs of biologically
similar molecules from the dissimilar pairs. A more
difficult test compared molecules that bind to the same
binding site in a protein with those that bind to a
different protein. In this case, the best result was a 14%
false negative rate, or a fraction active of 0.86. The
corresponding number for Unity fingerprints was 0.69.
Because this method was not tested in large diverse
data sets, it is difficult to discern the ultimate value of
the ToPD descriptors.

Dixon and Merz studied the ability of similarity
measures to predict which of six possible therapeutic
classes a compound belongs.32 At the optimum similarity
radius of 0.54, Daylight fingerprints were able to
correctly predict the class only 66% of the time. ACE
inhibitors, â-blockers, and H2 antihistamines, all series
known to include extensive 2D similarity, dominate the
correct classifications.

In a series of studies, workers from New Chemical
Entities compared traditional 2D descriptors with short
binary bit string representations that characterize mo-
lecular properties related to intermolecular interactions
as well as including some traditional substructural
keys.35-38 These minifingerprints are designed to pro-
vide an alternative to 3D searching for identifying new
structural classes with the same biological activity.
Although they report high accuracy in predicting the
biological class to which the compounds belong, in some
cases the compositions of the fingerprints are optimized
to provide this prediction, similar to a quantitative SAR

investigation. Nonetheless, the good performance of
short fingerprints suggests that they merit further
investigation.

Are the Daylight Fingerprints an Acceptable
Way to Quantify Similarity? Although we do not
argue that the Daylight fingerprint is the best descriptor
to use for similarity analysis, there is ample evidence
that it does contain information with respect to the
biological activity of compounds. Because they are
complex descriptions of the 2D structures of the mol-
ecules, molecules that are similar in Daylight finger-
prints in general appear similar to a synthetic chemist.
For this reason this type of fingerprint is appropriate
for diversity analysis aimed at populating a database
with compounds that could appear in different patents.
Other types of fingerprints may be appropriate for other
uses.

Despite the fact that our early work showed slightly
better performance of substructure-based descriptors,
we did find good performance of both Unity and Day-
light fingerprints in clustering biologically active com-
pounds16 and in predicting physical properties.19 In our
studies, Unity and Daylight fingerprints were essen-
tially identical in performance. Hence, we assume that
validations of Unity fingerprints also validate Daylight
fingerprints.

Many groups have studied alternate molecular de-
scriptors for similarity measurements related to biologi-
cal activity. Often, but not always, Unity or Daylight
fingerprints outperform more novel descriptors. Delaney
reported that the Daylight fingerprints outperform
Molconn topological indices and Unity fingerprints.14

Matter showed the superiority of Unity fingerprints to
various topological and 3D descriptors.11 Additionally,
Ginn, Turner, and Willett demonstrated that Unity
descriptors perform equally well as the EVA descriptor
in predicting octanol-water log P from similar com-
pounds.39 Also, Briem and Kuntz compared Dock-
generated fingerprints with Daylight fingerprints for
their ability to recognize the activity class of a molecule
when seeded into a database that also contains mol-
ecules of the same class, molecules of four other classes,
and twice as many compounds that do not belong to any
of the five classes.40 They found that using the most
similar compound to predict the activity class of another
was successful 62-86% of the time with Daylight
fingerprints and less with Dock-derived fingerprints.

There are a number of recognized limitations of
similarity calculations based on Daylight fingerprints.6,41

Because Daylight and 2D Unity fingerprints consider
the character of bond paths up to only a certain number
of bonds, they do not discriminate between molecules
that differ only in bond paths longer than the maximum.
In addition, these fingerprints do not explicitly include
shape information because molecules with different
atom types in the same environment are not considered
identical to the algorithms. The default fingerprints do
not include information about the stereochemistry of the
molecules, with the result that the fingerprints cannot
distinguish stereoisomers although the biological target
might recognize the difference. Using 2D Unity finger-
prints, Flower demonstrated that the more bits set in
the query molecule, the higher is the average Tanimoto
coefficient of all other molecules in the database to it.41

Chart 1
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This bias, which artificially inflates the number of
similars toward more complex molecules, complicates
the interpretation of results such as reported here.

What Is the Error in the Analyses That Led to
the 0.85/80% Rule? The previous analyses of activity
of similar molecules were not based on screening results
on truly diverse data sets. For example, our earlier
conclusions used two data sets that were rich in
compounds prepared for the particular targets.8,9 The
current results suggest that the medicinal chemists had
already identified the pharmacophore required for
biological activity and so prepared only compounds that
they thought should be active, hence the high rate of
activity in similar compounds. Others used SAR series42

or databases that had been constructed of sets of
molecules active in different assays.11,12 Additionally,
in general, these data sets contain potent compounds,
which we show in Figure 5 are more likely to identify
similar active compounds than are weakly active com-
pounds. As noted above, the results, albeit on only three
sets of compounds, reported by Delaney contradict the
0.85/80% rule and support the conclusions reported
here.14

Why Does the Similarity Principle Fail? The
similarity principle could fail for at least two reasons.
A problem that could in principle be overcome would
be if the similarity computation did not correctly
quantitate the intuitive similarity between two chemical
structures. A more serious challenge to molecular
similarity/diversity analysis would be if in fact intu-
itively similar chemical structures do not have similar
biological activity.

Figure 7 shows that Daylight fingerprints do not
encapsulate the structural similarity and dissimilarity
between compounds. It contains a sample of the com-
pounds that are g0.85 similar to pargyline, V. The one
active analogue, VI, shown would not surprise a me-
dicinal chemist. However, compounds VII and VIII
provide valuable SAR information because they are
perceived to be similar but are inactive. However,
compounds IX and X, although similar by the algorithm,
would be perceived to be less similar to V; hence, it is
not surprising or perhaps even interesting that they are

inactive. Work to improve the match between empirical
and computational perception of similarity would cer-
tainly be valuable. Many examples of studies of this
issue are cited above.

The Tanimoto coefficient also has its limitations.43 In
particular, it is not an even distribution. However, the
more serious challenge to the similarity principle comes
from biology itself. Structural biology has taught us that
protein structures are complex and flexible.44 For ex-
ample, compounds that look very similar to a chemist
sometimes bind in very different orientations in the
protein active site, bind to a different conformation of a
protein, or bind to a different protein altogether.15 In
fact, such observations are why medicinal chemists need
to make so many compounds to optimize the biological
activity of a structural class, even when they are
designing to a biological target of known structure.

Implications for Compound Selection and Li-
brary Design. The current work does not support the
practice of rejecting compounds that are g0.85 similar
to a compound already in the screening collection.
Rather, the optimum library will have a small number
of such similar compounds but not so many as to
compromise diversity. For the computational chemist,
a simple comparison of every potential added compound
with every available compound no longer suffices.
Instead, one would need to keep a tally, for each
compound, of the number of similars it has in the
existing database plus the number of similars to it that
one has already proposed to add to the database. The
target number for the size of a similarity cluster might
contain factors that allow for errors in the structure of
the compound or the probability that a vendor will not
be able to supply the compound. The informatics aspect
of such a strategy would involve keeping lists of both
the available and the selected compounds, updating lists
as new compounds are registered, updating compounds
that are removed from the vendor’s catalog, or updating
the current sample when it is exhausted.

If a combinatorial library is to be designed without
regard to similarity to existing compounds, then meth-
ods such as genetic algorithms could be used to optimize
the size of clusters.4,45-49 Although the implications of
this work for similarity searching are beyond the scope
of the current report, Figures 4-6 suggest that an
enrichment of actives will be found at similarity thres-
holds well below the traditional g0.85 cutoff.

Conclusions

This work demonstrates that structurally similar
compounds do have similar biological activity and that
as the structural similarity is increased, so is the
biological similarity. The enrichment in actives is higher
than is found with current methods of docking to
proteins of known 3D structure.

This work also shows that the biological similarity is
not so strong as has previously been assumed. For
example, at g0.85 Tanimoto similarity in Daylight
fingerprints, only 30% of compounds similar to an active
are themselves active. These results require a rethink-
ing of strategies for compound acquisition and design
of combinatorial libraries.

Figure 7. Pargyline (V) and five compounds g0.85 similar
to it.
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